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INTRODUCTION

During the last decade, much research effort has been devoted to determine reliable element
stiffness matrices for various shapes of plate bending finite elements. Attention has been
given to triangular, rectangular, and quadrilateral elements. Recent surveys of presently
available elements are given by Bell[l] and Gallagher[6]. A survey of rectangular finite
elements for plate bending is given by Clough and Tocher[3]. Comparative studies have
shown that rectangular elements show greater accuracy than triangular elements for the
same number of degrees of freedom.

In summary, a number of rectangular and quadrilaterial finite elements for plate bending
analysis are presently in use. Most elements show good convergence for displacements
towards the true solution. However, the rate of convergence does differ substantially for
different elements. Moreover, despite acceptable accuracy for displacements, some elements
show poor accuracy for internal moments.

THE REFINED PLATE BENDING ELEMENT

Refinements in a finite element displacement approach can be achieved by a better
approximation of the displacement field within an element. The basic unknowns in plate
bending theory are the lateral deflection w, the two slopes ex and ey and the internal moments
per unit length. For the present approach, at ~ach node (i) of a finite element, the following
generalized displacement components are introduced:

(1)

in which: w = w(x, y) = lateral deflection in z-direction, ex = slope about x-axis, ey = slope
about y-axis, 1>x = curvature of plate surface in x-direction, 1>y = curvature of plate surface
in y-direction, 1>XY = twist of plate surface.

The six degrees-of-freedom introduced at each nodal point lead to a 24-degree-of
freedom element and permit the choice of a higher order polynomial for the approximation
of the displacement field. Using this improved field, it is possible to approximate the actual
displacement field more closely, resulting in an improvement in accuracy and convergence.
Through continuity requirements imposed on the curvature terms, the internal moments at
all mesh points can be made continuous in this approach. Also, since internal moments are
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obtained simply by summing up curvature terms, these moments need not be computed
separately.

In the present approach, only 24 terms of a complete sixth-order polynomial are retained,
since the deflection function for w can be defined in terms of these 24 parameters only.
With geometric symmetry of the element. no preferential direction exists. The terms with
the highest even powers in x and y must be omitted in order to satisfy compatibility of w.
Despite omitting these terms, geometric isotropy is retained. Retention of inappropriate
terms would result in a singular transformation matrix.

Clearly, the chosen displacement function is of the non-conforming type. However, it is
evident that the completeness criterion is satisfied, since all rigid body displacement modes,
as well as all constant curvatures are included in the chosen functional representation. The
displacement field is assumed as:

w = w(x, y) = a 1 + a 2 ~ + a 3 /] + a4 ~2 + as ~/] + a61]2 + a 7 ~3 + a 8 ~2/] + a9 ~/]2

+ a10 /]3 + all ~4 + a12 ~3/] + a13 ~2/]2 + a14 ~/]3 + a 1S /]4 + a16 ~s

+ a17 ~4/] + a18 C/]2 + a19 ~2/]3 + a 20 ~/]4 + a 21 /]5 + a 22 ~s" + a 23 ~3,,3

+ a24~rls. (2)

In which the normalized coordinates are defined as follows:

~ = xla and /] = ylb.

The constants ai' with i = I, 2, .,., 24 can be evaluated in the usual way by establishing
compatibility of deformation at the four nodal points. The derivation of the element stiffness
matrix follows standard procedures and is outlined in detail in[9]. The introduction of
non-dimensionalized coordinates leads to a simple integration, and the final evaluation of
the element stiffness matrix, which is of size 24 x 24, is performed in the digital computer.

For all common loading conditions, the equivalent concentrated nodal forces can be
determined from an energy approach which is consistent with the evaluation of the element
stiffness matrix.

The deformed shape of a plate structure must be found in such a way that all boundary
conditions adhering to aproblem under consideration are fulfilled. Boundary conditions in
plate bending problems usually include both force, or static, and displacement, or kine
matic type. Only displacement type boundary conditions, i.e. restraints which can be
expressed in terms of displacement components, can be satisfied in a displacement approach.
However, due to the fact that in the present approach the three curvature terms are included
in the final displacement vector, certain types of plate boundary conditions can be approxi
mated more closely if no line moments are acting along the boundary under consideration.
Finally, for the special case of a plate of abrupt change in thickness, the curvature terms
should not be imposed but rather be allowed to float and come out of the solution.

ANALYSIS OF RESULTS

The results obtained for a square, isotropic plate with four simple supports discretized
by four meshes having I, 4, 16 and 64 elements per plate quadrant are shown herein.
Poisson's ratio was assumed to be v = 0·30. This simple problem was chosen in order to
simplify the comparisons with other known elements and analytic solutions.

Complete deflection profiles along a center-line of the plate together with exact values,
are given in Table I for uniformly distributed loading, and for the case of a single concen
trated load. Exact values were found by evaluating the series solutions derived in[7] at all
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Table 1. Deflection profiles ..I _2>--3-.-....4>--~5_ .... x
~

., . / ,

y

Mesh Point 1 Point 2 Point 3 Point 4

(a) Uniformly loaded plate, multiplier q~"

Point 5

4x4 0·004076 0·002948
8 x 8 0·004064 0-003778 0·002939 0·001624

16 x 16 0·004063 0·003776 0·002938 0'001623
Exact value 0·004062 0·003776 0·002938 0'001623

(b) Single concentrated load, multiplier P~2

4x4 0·011497 0·007144
8 x 8 0·011572 0-010066 0·007141 0·003670

16 x 16 0·011593 0-010068 0·007139 0·003669
Exact value 0-01160 0-010066 0-007139 0'003668

o·
O·
O·
0-

o·
O·
O·
O·

points of interest. Good agreement of displacements is apparent as the convergence is fast
and monotonic. Table 2 lists the computed internal moments Mx. My and Mxy along a
center-line of the plate, together with exact values, where available. From these results, it is
evident that excellent accuracy for displacements and internal moments is obtained with the
refined plate element.

Table 2. Plate moments
M x , My and M xy

uniformly loaded plate
(Multiplier qL2)

My___ 5

2 :3 4

x

y

Mesh Point 1 Point 2 Point 3 Point 4 Point 5

4x4 0·0454 0·0383 0-
8x8 0'0475 0-0454 0'0385 0'0248 o·

16 x 16 0'0478 0'0457 0·0388 0'0248 o·
Exact value 0·0479 0·0458 0'0390 0·0250 O·

4x4 0·0454 0·0350 O·
8 x 8 0-0475 0'0444 0·0348 0-0205 0-

16 x 16 0-0478 0'0447 0·0355 0-0203 0-
Exact value 0-0479 0·0448 0-0356 0'0204 0-

4x4 o· 0·0133 0·0319
8x8 o· 0·0037 0·0134 0·0252 0'0288

16 x 16 0- 0-0038 0·0134 0·0252 0-0324
Exact value o· 0·0037 0·0134 0'0252 0·0324

M xy

Moment

My

Mx
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Table 3. Effect of boundary conditions on center deflection

Boundary
conditions Mesh 2/2 Mesh 4 ~, 4 Mesh 8 .; 8 Mesh 16 x 16 Multiplier

(a) Center deflection under uniformly distributed load
Type I 0·004187 0·004076 0·004064
Type II 0'004066 0·004063 0'004062
Type III 0·004065 0·004063 0·004062
Exact value 0·004062

0·004063
0·004062
0·004062

PU
D

0·011593
0·011593
0·011593

0·011572
0'011570
0'011570

0'01160

(b) Center deflection under concentrated load
Type I 0·011265 0'011497
Type II 0·011184 0'011478
Type III 0'011180 0'011478
Exact value

Table 4. Effect of boundary conditions on plate
moments M x

3 5
y

2 4
/

Mx t /

~

/

X

Boundary
conditions Point 1 Point 2 Point 3 Point 4 Point 5

(a) Uniformly distributed load, Mesh 16 x 16
Type I 0·0478 0·0457 0·0388 0·0248 -0,0010
Type II 0·0478 0·0457 0·0387 0·0248 -0'0002
Type III 0·0478 0·0457 0'0388 0'0248 O·
Exact value 0·0479 0·0458 0·0390 0·0250 O·

(b) Single concentrated load, Mesh 16 A 16
Type I 0'1230 0·0588 0·0244 -0,0025
Type II 0·1230 0·0588 0·0245 -0'0004
Type III 0'1226 0·0586 0·0242 O·
Exact value 0'1231 0'0585 0·0251 O·

Multiplier

P

In order to study the effect of the enforcement of boundary conditions, a number of
comparisons have been made. For the purpose of these comparisons the following types of
boundary conditions are defined:

Type I Only displacement type boundary conditions, associated with w, ow/ox and
ow/oy are enforced.

Type II In addition to the constraints of Type I, curvature terms derived from a know
ledge of the geometry of the deflected surface are enforced.

Type III In addition to the constraints of Type II, curvature terms derived from static
considerations are enforced.

Tables 3 and 4 list, in part, the results of this investigation. Comparing the computed
values for the center deflection of the problem at hand for the different types of boundary
conditions enforced, it can be stated that, if boundary conditions of Types II and III are
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enforced, the structure tends to become stiffer. However, for finer meshes no difference can
be recognized, thus leading to the conclusion that the imposition of additional curvature
constraints does not improve the computed center deflection as this would be expected from
the Minimum Potential Energy Theorem. For internal moments however, the imposition of
additional curvature terms does improve the moment field, especially in the vicinity of
the boundaries.

COMPARISON WITH EXISTING PLATE ELEMENTS

A direct comparison in terms of mesh size of the different finite elements used for this
example is not appropriate, since the computational effort is different for different elements
and meshes. Most results available in the literature are listed separately for each mesh
size. In a finite element approach involving fine meshes, the major part of the computer
time required is used for the solution of the typically large system of simultaneous equations.
Hence, a more reasonable way of comparing the results is to plot the percentage error in
deflection or internal moment against the number of degrees-of-freedom; the solution time
being directly proportional to this number in the Cholesky decomposition technique.

In Figs. 1 and 2 the percentage error in central deflection is plotted against the number of
degrees-of-freedom of the problem for some known finite elements. Clearly, the refined
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Fig. 1. Percentage error in central deflection vs number of degrees-of-freedom-simply
supported plate under concentrated load.
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Fig. 2. Percentage error in central deflection vs number of degrees-of-freedom-simply
supported plate under uniformly distributed load.
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element compares favorably with most other elements for a given number of degrees-of
freedom. A better index for comparison would be the time of the total computational
effort needed for the entire solution of larger sized problems. In fact, the computer time
needed to generate the element stiffness matrices, to assemble the system stiffness matrix,
to generate force vectors, to solve the resulting large system of simultaneous equations and
finally, to find all internal moments would be a better measure for the discussion of the
relative merits of different proposed elements. Comparisions for other sample problems are
made in[9].

SUMMARY AND CONCLUSIONS

A refined rectangular plate element for use in a finite element analysis of elastic plates is
presented. Along with the three basic nodal displacements, three curvature terms are
entered as unknowns in the vector of generalized displacements. Results found for different
example problems solved indicate that the refined element gives very good accuracy for
displacements as well as for internal moments. The refined element, though ofa non-conform
ing type, compares favorably with most presently known rectangular or quadrilateral finite
elements.
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Pe3JOMe - Bo BpeMJ! rrOCnep,HefO ,ll,ecllTHJIeTllJl M1l0fO yCHJIHll 6hIJIO 3aTpalJeHO Ha orrpe,ll,eJIe
HHe Ha,ll,eJKHhlX MaTpHlJHhIX rrapaMeTpOB lICecTIeOCTH KOHelJHhlX 3JIeMeHTOB pa3JIH'IHbIX $OpM
,ll,JIlI H3rH6a IlJIaCTHH. bOJIbIIIOe BHHMaHHe y,ll,eJIllJIH TpexyrOJIbHbIM, IIpllMOyrOJIhHhIM H
'ieThIpexyrOJIbHhIM 3JIeMeHTaM. He,ll,aBHHe HCCJIe,ll,oBaHHll HMeIOlL\HXCll B HaCTOlllL\ee BpeMll
3JIeMeHTOB ,ll,aHhI b3JIJIOM (crrp. 1) H raJIJIaxepoM (crrp. 6). 0630P rrpllMoyrOJIhHhIX KOHelJHhIX
3JIeMeHTOB H3fH6a rrJIaCTHH ,ll,aHhI rJIoyoM H TO'iepoM (crrp. 3). CpaBHHTeJIhHhIe H3Y'ieHHH
rrOIeaJaJIH, 'iTO rrpllMoyrOJIhHhle 3JIeMeHThI TOlJHee, 'ieM TpexyrOJIbHhle npH TOit lICe CTerreHH
cBo60,ll,hI.

B HaCTOlllL\ee BpeMlI ,ll,JIll aHaJIH3a H3rH6a rrpHMeHllIOTCll HeCIeOJIhKO rrpllMoyroJIhHhIX H
lJeThlpexyrOJIhHhIX KOHe'iHhIX 3JIeMeHTOB. boJIhIIIHHCTBO 3JIeMeHTOB IIOIea3hIBaIOT XOpOIIIyIO
CXO,ll,RMOCTh cMelL\eHHit. O,ll,HaKO CTerreHh CXO,ll,HMOCTH CHJIbHO pa3JIH'iaeTCll ,ll,JIlI pa3JIH'iHhIX
3JIeMeHTOB. KpoMe Toro, HecMoTpH Ha rrpHeMJIeMYIO TOlJHOCTh CMelL\eHHH, HeIeOTOphIe :me
MeHThI O'ieHh HeTO'iHhIe rro OTHOIIIeHHIO Ie BHYTpeHHHM MOMeHTaM.


